
v

/ic-c .v..- -e ?f

. ,..-/'C..-

zo

POLYATOMIC MOLECULAR DIRAC-HARTREE-FOCK CALCULATIONS

WITH GAUSSIAN BASIS SETS.

Kenneth G. Dyallt, Knut Fmgri, Jr., and Peter R. Taylor_.

tEloret Institute, 3788 Fabian Way, Palo Alto,

California 94303, U.S.A. *

++Department of Chemistry, University of Oslo,

P.O. Box 1033, Blindern, N-0315 Oslo 3, Norway.

INTRODUCTION

The majority of research in ab initio quantum chemistry is performed on

molecules containing light atoms, and indeed a large part of chemical research gen-

erally is concerned with such systems. Ab initio quantum chemical calculations are

limited by the performance of computer hardware and software, and advances in

these areas have increased the scope of quantum chemistry to the point where it

is now possible to perform accurate calculations on systems containing the lighter

transition metals. However, there are many important chemical processes involving

heavy elements, and here another obstacle to accurate quantum chemical calcula-

tions presents itself- the increasing importance of relativistic effects with increas-

ing atomic number.

The chemical effects of relativity have been extensively documented (for ex-
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haustive reviews see Pyykk5 1978, 1986, 1988, Pitzer 1979, Pyykk5 and Desclaux

1979). The traditional methods of computational chemistry are clearly inadequate

for the description of important phenomena such as relativistic orbital contractions

and spin-orbit splitting -- effects that may decisively influence structure as well as

reactivity of heavy-atom molecules. Yet molecules containing heavy atoms are im-

portant in a number of areas of chemistry, such as catalysis and surface chemistry.

The need for accurate quantum chemical calculations in these areas has motivated

recent theoretical and methodological developments which are aimed at overcoming

the obstacles to a relativistic treatment of systems containing heavy atoms.

One widely-used approach to calculations on molecules containing heavy

atoms is the relativistic effective core potential (RECP) method. While this method

has considerable advantages, there are situations in which it is inappropriate, and

in most applications spin-orbit splitting is not included. Effective core potential

methods also need calibration against ab initio calculations for validation. An all-

electron relativistic method is clearly required, both for rigour and understanding,

and in evaluating alternatives.

Numerical methods have been used successfully in atomic Dirac-Hartree-

Fock (DHF) calculations for many years (Desclaux 1975, Grant et al. 1980). Some

DHF calculations using numerical methods have been done on diatomic molecules

(Laaksonen and Grant, 1984, Sundholm et al. 1987, Sundholm 1988), but while

these serve a useful purpose for calibration, the computational effort in extending

this approach to polyatomic molecules is prohibitive. An alternative more in line

with traditional quantum chemistry is to use an analytical basis set expansion of the

wave function. This approach fell into disrepute in the early 1980s due to problems

with variational collapse and intruder states, but has recently been put on firm

theoretical foundations (Grant 1986, Grant and Quiney, 1988, Quiney 1988). In

particular, the problems of variational collapse are well understood, and prescrip-

tions for avoiding the most serious failures have been developed. Consequently, it

is now possible to develop reliable molecular programs using basis set methods. We

describe such a program in this paper, and report results of test calculations to

demonstrate the convergence and stability of the method.

THEORY

With a single determinant many-electron wave function constructed from



4-spinors IJ ), we may write the (unrestricted) Dirac-Fock energy as

11 II

E=_-_(j[hD[j)+-_ [(jklOIjk)-(jklOIkj)]. (1)
j=l j =1

The one-electron operator in the field of the nuclei is

ha = -ic _.V + (;3- 1) cs + Y"_C, (2)

where o< = (ax, a u, O<z); _z, au, o<z and/3 are 4 x 4 matrices,

(o (o (o o)_ = = /_= 0O"x 0 , Oly O/z ---- •a N 0 ' az 0 ' -Is

a_, a N and az are the Pauli spin matrices, and Is is the 2 x 2 unit matrix. The

fully covariant electron-electron interaction can be expanded in a power series in

c -2. The lowest order term, which is C0(c°), is the Coulomb interaction,

1
_ _ _(I,2) -- --. (3)
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The term which contributes at the next order, Co(c-S), is the Breit interaction,

whose contribution to the energy comes mainly from the region near the nuclei.

For present purposes, the Coulomb interaction is an adequate description of the

electron-electron interaction. Writing the 4-spinors in terms of large and small

component 2-spinors jL and js,

where the superscripts L and S indicate large and small components respectively,

we obtain for the matrix elements of the one- and two-electron operators

<jlhDIj) = c [(jL i(a.V)[js) _ (jsI(G.V)ijn)] (5)

+ (jLIvnuc Ij L ) + (jS lvnuc - 2J Ij s ),

(j klOIj k) = (jLjL ik LkL ) + (jLjL ikSk s )

+ (jsjs ik L kL ) + (jsjs ]kSk s )
(6a)



(j klOIkj) = (jL kL IkLjL)+ (jLkL IkSjs)

+ (jSkS Ikgj L ) + (jSkS IkSj s ).
(6b)

We expand the large and small components in a basis of 2-spinors {#L} and {#s}

N N
L S

IJ_) = Z %_I_); IJ_) = _ %j IJ),
_=1 _=1

(7)

and define the nuclear potential energy, overlap, kinetic energy and density matrix

elements by

v_XX= <_x ivan=I_x >, (8)

(9)

n x_ = (.x I_.vl P'), (10)

v.V = C;_j Cuj

j=l

(11)

respectively, where X and Y can be L or S, with the restriction that for the kinetic

energy matrix elements, X ¢ Y. The Dirac-Fock energy can then be written

N

E __, [ Ls Ls_DsLnsL_ LL LL SS SS
#u

N

-[-21 E [a"_ ux'_A[FILLr_LL{(#LYE ]gL_L)(__ #L,_L [_LvL)}

I_uaA

nSSnSS _ #sAs._,,_.,_ {(_%sl_sA _) ( ]_%s)}

2 SS
-2c S..)]

(12)

LL SS _tL uL+2D.. D_, x ( [ _sAs) _ onLSnSL #LAL ssus)]

Differentiating with respect to the large and small component coefficients, we obtain

the following matrix representation of the Dirac-Fock equations,

F LL -- E S LLFSL F ss - e S ss / c s

=0. (13)
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The elements of the various blocks of the Fock matrix are defined by

N

= [D._ {( I )-(
_A

ss #LvL _sAs)],+D,_ ( I

(14a)

N

F/,%s = V;ST-2JS,% s + _ [D.SS_{(#%Sl_SAS)-(#SASl_%S)}

+ DLLf_A k t ISvS ] tcLz_L )]'

(14b)

N

= - D,,_( = -#v "
(14c)

The 2-spinors may be written as a combination of scalar functions Ia) and I b ) with

spin functions:

1

[l_X) = TXa'a)(o> +T_Z'b)(OI> •
(15)

where <;) and (01) are unit vectors in spin space c°rresp°nding t° ms -- { and

1 conventionally labelled a and/_. These may be used to further reducems ------ -{_

the Fock matrix expressions:

F_XY = E E Tx_" Faa[ TY'' (16)
ar ab

where a and r run over both spin indices. The Fock matrix elements in the scalar

basis are given by the following expressions. If functions a and b belong to the same

component (L or S),

F'.[ = V/,%_' + _( ablcd) IDled" + D_"d"]- E( adlcb)D_"d _',
cd cd

(17a)

<7 = - _ ( adl cb)DoT. (17b)
cd



:_.j The sums over c and d for the direct integrals ( ab [cd) extend over both components,

while those for exchange integrals (adlcb) extend only over the same component

as a and b. For the blocks connecting the large and small components,

Ffd' = (2a ) cII°b - _ ( ad l cb ) Dc"d"
cd

(17c)

F2_ = clI_'b -- _ ( ad ]cb ) Dc_'_
cd

(17d)

where a and d are large component functions, and b and c are small component

functions. The kinetic energy matrix elements are defined by

0 +1 0 i 0
II°b -- (alTzzlb), IIa_ = (al_xx + _yy[b).

(18)

CONSIDERATIONS FOR IMPLEMENTATION

There are a number of alternatives to be considered in the implementation

of the Dirac-Fock method in a basis set, such as choice of basis function type and

nuclear model, relations between small and large component basis functions, form

of spinor expansions, transformation from the scalar to the 2-spinor basis, inclusion

of double group symmetry (including time-reversal symmetry), details of integral

storage and transformation and SCF method. We discuss these alternatives in the

following subsections.

Basis function type and nuclear model

The principal causes of variational collapse in the attempt to solve the Dirac

equation are the failure to satisfy the boundary conditions at the nucleus (Grant and

Quiney 1988), and the failure to ensure the proper relations between the large and

small component basis functions (Ishikawa et al. 1983, Dyall et al. 1984, Stanton

and Havriliak 1984). The second point will be addressed in the next section.

Numerical solutions of the Dirac-Fock equations have the boundary con-

ditions built in, so that any spherically symmetric model of the nuclear charge

distribution may be employed. For finite basis set approximations, these boundary

conditions will determine the form of the basis functions. Thus, the choice of basis

function type and nuclear model are interrelated.



*= /

The traditional model used in electronic structure calculations for the nu-

clear charge distribution is the point nuclear model, which gives rise to the cusp

in the non-relativistic electronic wave function at the nucleus. In the solution of

the electronic Dirac equation, this cusp is replaced by a singularity, which has to

be modelled by the basis functions. For atoms and diatomics, Slater-type functions

with non-integral exponents of r should be used, such as the S-spinors or L-spinors

advocated by Quiney et al. (1989). While these are convenient for atomic calcu-

lations, and may also be useful for diatomic molecules, their use for polyatomic

systems would be computationally intractable.

The alternative to the point charge model for the nucleus is to use some kind

of charge distribution with a finite radius, for which the wave function is no longer

singular at the origin. For the purposes of electronic structure calculations, the

details of the model for the nuclear charge distribution are not critical, provided

they approximately represent the real distribution *. The most popular models in

atomic structure calculations are the uniformly charged sphere model,

pnuc(r) =po, r <_to

= O, r > ro

and the Fermi distribution,

pnuc(r) - p0[1 + exp((r - a)/c)]-'.

Visser et al. (1987) have investigated the use of a single Gaussian function for the

nuclear charge distribution in basis set DHF calculations,

None of these models is anything but a crude representation of the nuclear charge

distribution, but they are adequate for electronic structure calculations. The jus-

tification for the use of the uniform and Fermi models is that they have been used

in the fitting of nuclear scattering data to obtain gross nuclear dimensions. The

parameters r0 for the uniform distribution, a and c for the Fermi distribution, and

r/,,uc for the Gaussian distribution are determined from these fits to nuclear scat-

tering data. The effect of the choice of finite nuclear model on the energy is not

* This will not necessarily be true, of course, for properties such as nuclear

hyperfine structure and parity non-conservation effects, which may be sensitive to

the nuclear model.



Table 1. The effect of the nuclearmodel on the is eigenvalueof Hg79+,given in Eh.

Nuclear model Eigenvalue E E - E(point)

Point -3532.191 849
Uniform -3530.174 275 2.017 574
Fermi -3530.182 156 2.009 693

Ganssian -3530.193 999 1.997850

v

large, as shown by some numerical calculations for Hg 79+ using a modification of

the GRASP program (Dyall et al. 1989), given in table 1. The nuclear size effect

is of the order of 2 Eh, but the effect of the shape of the nuclear boundary is only

of the order of 20 mEh.

The relation between the choice of basis functions and the nuclear charge

model may be clarified by the following analysis. The nuclear potential for any

fi_te nuclear charge distribution may be expanded in a power series about the

origin,

V""C(r) = v0 + v2r 2 + v3r3 + ....

Note that there is no term linear in r, so that for small r, regardless of the details

of the nuclear model, the potential is approximately harmonic. The solutions of

the SchrSdinger equation for a harmonic potential are Hermite Gaussian functions;

the solutions of the Dirac equation are not, but may be represented by Gaussian

functions. At very short range, then, Gaussian functions will be appropriate basis

functions. If all terms of odd order in the series expansion of the nuclear potential

have zero coefficients, then the solutions of the electronic Dirac equation for a many-

electron atom are either pure even or pure odd functions of r. Both the uniform

and the Gaussian nuclear charge distribution have such an expansion inside the

nuclear radius. The series for the uniform model is only valid inside the nuclear

radius, but for the Gaussian nuclear model the series is valid for all r. Solutions

of the Dirac equation with a uniform nuclear model will have discontinuities in

the higher derivatives at the nuclear boundary, but for a Gaussian nuclear model,

the solutions wilI be continuous and differentiable to all orders for all r. The Fermi

distribution, on the other hand, has terms of odd order in the series expansion, which

will introduce elements in the solutions which have cusps in the higher derivatives

at the origin. Use of the Gaussian nuclear model thus leads to solutions which



are mathematically more well-behavedthan the other two models, and as a result,

expansion of the solutions in a finite Gaussian basis set is likely to have superior

convergence properties.

One further, practical consideration in the choice of nuclear model needs

mention. The calculation of many-centre nuclear attraction integrals would have to

be clone numerically for the uniform and Fermi models, whereas for the Gaussian

model, the integrals may be evaluated using existing technology, since they require

only straightforward changes to the expressions for point nuclear integrals.
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Kinetic balance,

Many of the problems with variational collapse and intruder states disap-

peared, once it was established that the small component basis functions must at

least be related to the large component functions (Ishikawa et al. 1983, Dyall et al.

1984, Stanton and Havriliak 1984) by the condition now known as kinetic balance,

}. (19)

Most of the remaining problems relate to the nuclear boundary conditions discussed

above. Kinetic balance is, however, only a zeroth-order or non-relativistic approx-

imation, which is useful when the potential V "'_c is much smaller than 2c 2. A

relation which more accurately represents the small component where the potential

is large (Ishikawa et al. 1983, Dyall et al. 1984), derived from the one-electron

Dirac equation, is

{, }2 { -vTM] o.v }. (20)

With a Gaussian nucleus, kinetically balanced Gaussian basis functions do not sat-

isfy this relation, but they still provide a good representation of the small compo-

nent.

Applying a.V to jj-coupled 2-spinors composed of spherical harmonic Gaus-

sian functions of the form

Xn,t,m(r, 8, ¢) = Afrn-lexp(-_r 2) ]Qm(0, ¢),

with n = _+ 1, yields the following results. For the j : _+ ½ spin-orbit components

of the large component 2-spinors, the small component 2-spinors are composed of

functions Xn+l,t+l,m', with appropriate values of m'. The small component basis

functions in this case have one more unit of angular momentum than the large

component basis functions. For the j = g - ½ spin-orbit components of the large

component 2-spinors, the small component 2-spinors are composed of functions

X,,+I,t-I,,,_' and X,-1,t-l,m'. In this case, the small component basis functions

have one less unit of angular momentum than the large component basis functions,

but they are also composed of two radial functions rather than just one. Thus,

the lsl/2, 2p3/2, 3ds/2, ...large component 2-spinors generate 2pl/2, 3d3/2, 4f5/2,

...small component 2-spinors; but the 2pl/2, 3d3/2, 4f5/2, ...large component 2-

spinors generate 181/2, 2p3/2, 3d_/2, ... and 3sl/2, 4p3/2, 5d5/2, ... 2-spinors. Kinetic

balance also requires equal exponents for corresponding large and small component

Gaussian functions.



If we consider the scalar Gaussianbasisfunctions of which the 2-spinors are

composed, there are 2e+ 1 large component basisfunctions for eachg value, if the

two spin-orbit components share the same basis functions. By the above rules, these

generate 6g + 1 small component basis functions, except for s, which generates 3

basis functions. The total number of basis functions for a given g shell is then 8g + 2,

which represents an approximately fourfold increase in the basis set size over the

corresponding nonrelativistic basis set size of 2g + 1 spherical harmonic Gaussians.

If the two spin-orbit components do not share the same basis functions, we must

add 2e + 1 functions to the large component basis, making a total of 10g + 3 basis

functions, which is an almost fivefold increase.

v

For example, consider a non-relativistic basis set consisting of 15 s, 11 p, 6

d and 3 f functions, which has a total of 99 basis functions. With common basis

functions for the spin-orbit components in the large component set, the correspond-

ing relativistic basis set would have these 99 functions for the large component set,

and the small component set would consist of 11 s, 21 p, 14 d, 6 f and 3 g pure

spherical functions, and 11 3s, 6 4/9 and 3 5d "contaminants" -- a total of 257 ba-

sis functions for the small component. Including both components, the relativistic

basis set would consist of 356 basis functions. Without the use of common basis

functions for the spin-orbit components, the relativistic basis set would consist of

440 basis functions in total.

In a contracted basis set, it would generally be necessary to have different

contracted functions for the two spin-orbit components of a given shell. Both the

large and small component functions would have different contraction coefficients,

including the contaminants (which belong to one spin-orbit component) and the

pure spherical functions (which belong to the other). If we contracted the above

non-relativistic basis to 6s5p3d2f, for example, the relativistic contracted basis

would have 80 large component basis functions and 130 small component basis

functions, a total of 210 basis functions, compared with 43 basis functions for the

nonrelativistic contracted basis. Thus, contraction as a space-saving mechanism is

not quite as advantageous in a relativistic calculation as compared with a nonrela-

tivistic calculation, owing to the need to duplicate the large component set for all

basis function types except s.

Choice of spinor expansion

The expansion of the components of the 4-spinors ]j ) in a basis set can

be done in three ways: independent expansions for each of the four components,
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expansion in terms of 2-spinors, as outlined in this paper, and expansion in 4-

spinors, where each component is fixed in relation to the others. Since the last

of these has not been much used, we will focus on the first two. Atomic finite

basis calculations (see Pyykk5 1986 for references) have usually exploited atomic

symmetry, and expanded only the radial parts of the large and small components

in a basis. These use equal length expansions for the large and small components.

Some molecular calculations have also used a 2-spinor basis (Hegarty and Aerts

1987).

Early molecular calculations (Mark et al. 1980, Lee and McLean 1982) used

separate expansions for each of the four spinor components. This corresponds to

carrying out the entire calculation in the scalar basis. It inevitably means that the

basis set expansions for the large and small components will have different lengths.

For example, consider the case of a single s function for the large component. This

requires a p-type function in the small component, which consists of three functions:

pl, p0 and p-1. If these are coupled to the spin to form jj-coupled 2-spinors, we

get two functions for the Pl/_ and four for the P3/2 spin-orbit components of the

p shell. Only the pl/2 set are used to represent the small component for the large

component s function. The p3/2 functions form a basis for a "negative-energy"

(or positron) state of symmetry j = 3/2, which will also appear in the spectrum

along with the desired states. If the basis is ill-chosen, these extra states may

not even be confined to the negative continuum, but appear instead as intruder

states in the bound state region or in the positive continuum. A classic example of
1

intruder or spurious states is the calculation of the hydrogenic states for j -- _ -

by Drake and Goldman (1982), who observe a state degenerate with the state of

the same j, but different _ value -- for instance, a pl/2 state degenerate with the

lsl/2 state. The features of this approach, then, are that it gives an unbalanced

representation of the two branches of the spectrum, with a better description of

the negative continuum, which is of no interest for molecular properties, than of

the bound states and positive continuum. More than that, the extra functions will

give rise to extra eigenvalues, which may occur as intruder states in the parts of the

spectrum which are of interest, as Grant and Quiney (1988) have warned.

Some more recent 2-spinor based calculations, both on atoms (Ishikawa and

Sekino 1990) and molecules (Visscher et al. 1990), have also employed different

expansion lengths for the large and small components. Their expansions have a

better representation of the negative energy states than the positive energy states.

Experience has generally shown that, provided the basis functions are appropriate

for the boundary conditions, the intruder states are to be found in the negative



--j continuum. However, the physical states of interest may be distorted by the higher

density of states in the negative continuum (see Stanton and Havriliak 1984), and

mask problems of variational collapse or bounds failure. A more serious problem

arises in the treatment of electron correlation if the negative continuum is to be

included, for example in perturbation sums. Calculations of this type go beyond

the no-pair approximation, i.e. they include contributions from creation of electron-

positron pairs (see Grant and Quiney 1988 for a discussion). While the inclusion of

the negative continuum is not likely to be of importance for molecular properties,

the distortion of the positive spectrum, which results from the higher density of

states in the negative continuum, may even affect calculations that do not include

it.

Though the seriousness of the problems that may arise from the use of dif-

ferent length expansions will depend on the nature of the calculations, we believe it

is wise to avoid any possible problems by ensuring that the large and small compo-

nent spinor basis sets are of the same length, which means using jj-coupled atomic

2-spinors as a basis for both large and small components in matched sets.



Transformation to 2-spinors

The considerations of the previous section affect only the final representation

of the eigenstates of the system under study. In the process of the construction of

these eigenstates, it is not necessary to keep all quantities in the 2-spinor basis. In-

deed, there may be some advantages in using the scalar basis at various stages in the

calculations. Computationally, the transformation to 2-spinors is not expensive, as

the transformation matrix is very sparse. The transformation will scale only as the

number of indices to be transformed. The point at which the transformation is done

will then be determined by the practical considerations of storage and efficiency.

In a direct SCF procedure, the transformation can be done while the Fock

matrix is being constructed; in conventional SCF, there are two points at which the

transformation to 2-spinors may be done. The first is at the stage of two-electron

integral generation; the second is after construction of the Fock matrix.

The decision of whether or not to transform the integrals will be influenced

by a number of factors, but the overriding consideration will be that of disk space,

given the much larger basis sets needed in a relativistic calculation. Most molecular

integral codes generate integrals over real basis functions, which may be Cartesian

or spherical functions, atom-centred or symmetry-adapted functions. Since the jj-

coupled 2-spinors are complex, the permutational symmetry of the integrals will be

reduced after the transformation, and hence the number of values to be stored will

increase. Time-reversal symmetry regains one degree of permutational freedom. If

the integrals are generated over symmetry functions, then the fact that the 2-spinor

functions are generally distributed between fewer irreducible representations in the

double group than the scalar functions are in the single group will, in general,

mean an increase in the number of values stored. These increases are offset by

the reduction in size of the small component basis upon transformation. It is not

immediately clear that transformation will inevitably increase the total storage

requirements, but it may do so. The transformation would be implemented either

at the same stage as the spherical harmonic transformation, since it is of a similar

nature, or after the symmetry transformation (if the integral code includes this).

If the integrals are kept in the scalar basis, then the Fock matrix must be

transformed instead. Since the construction of the Fock matrix is the most time-

consuming step in a conventional SCF calculation, it is important to make it effi-

cient. Use of unordered integrals in a non-relativistic calculation does not permit

vectorization; to achieve this, ordered integrals or supermatrices are used. Due to



the large basissetsneededfor relativistic calculations, the extra disk spacerequired
for integral ordering may not be available. When constructing the Fock matrix in
the scalar basis, however, each (ablcd) integral with distinct indices contributes
in 36 unique places. It is then possible to vectorize the construction of the Fock
matrix using sparsevector operations. While the gain in speed from vectorization

is smaller than that obtained from the use of ordered integrals or supermatrices, it

is nevertheless substantial.
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IMPLEMENTATION

Our program uses for the scalar basis spherical harmonic Gaussian functions,

which are symmetry-adapted for D2h and its subgroups. The jj-coupled 2-spinors

constructed from these are symmetry functions for the corresponding double group.

Linear molecules are treated as a special case. The nuclear charge distribution is

a single Gaussian with an exponent chosen to match the rms radii of the Gaussian

and the nucleus, given by

_,,,c-" 31(2r_,,_). (21)

The nuclear rms radius is fitted to a function of the nuclear mass:

J 2_I/2rr,_ = _r ],_,c = 0.836A1/3+0.57 (22)

where A is in amu and rrm8 is in fm. This formula is appropriate for the Fermi

2-parameter distribution. The one-and two-electron integrals, which are generated

by an adaption of MOLECULE (AlmlSf and Taylor, unpublished), are kept in the

scalar basis. The Fock matrix is constructed in the scalar basis, then transformed to

the 2-spinor basis. Each (double group) symmetry block of the Fock matrix is sym-

metrically orthonormalized, and diagonallzed using standard EISPACK routines.

Density damping has been implemented to accelerate convergence.

RESULTS

Testing of any new program requires comparison of a number of calculations

of various types with known results. For atoms, the adapted GRASP program

(Dyall et al. 1989) was used to obtain numerically accurate Dirac-Fock-Coulomb

energies with a Gaussian nuclear charge distribution for comparison with results

from the present program. For molecules, fewer results exist for comparison. The

numerical diatomic calculations of Laaksonen et al. (1984) and Sundholm (1988)

were used for comparison. All calculations were done with uncontracted basis sets.

One-electron calculations

The first sets of calculations were performed on one-electron systems. Tables

2 and 3 give results for the ls orbital of H and Hg 79+. The basis sets for H were

taken from Partridge (1989), while those for Hg 79+ were obtained by scaling the H

sets. The results converge from above on the exact solution in both cases. For H,

the error in the total energy, due to basis set truncation, converges more slowly than



Table 2. Convergenceof energies for hydrogen. Values given in #Eh.

Basis AE A(AE_el) % error

7s 16.724 0.021 0.32

8s 5.448 0.010 0.15

9s 1.869 0.005 0.07

lOs 0.670 0.002 0.03

11s 0.250 0.000 0.01

12s 0.097 0.000 0.00

13s 0.039 0.000 0.00

14s 0.016 0.000 0.00

15s 0.007 0.000 0.00

Numerical results: E = -0.500 006 656 Eh, AErei = -6.656 59 #Eh.

Table 3. Convergence of energies for Hg 79+. Values given in mEh.

Basis AE A(AErel) % error

7s 2938.266 2839.618 0.86

8s 1229.427 1199.215 0.36

9s 458.401 448.863 0.14

10s 138.589 135.432 0.041

II_ 32.612 31.475 0.010

128 12.081 11.635 0.004

13s 9.370 9.197 0.003

14s 4.058 3.996 0.001

15s 0.540 0.504 0.0002

Numerical results: E - -3530.193 999 Eh, AErel = -330.482 066 Eh.

Table 4. Convergence of energies for Hg 79+ with optimized scale factors. Values

given in mEh.

Basis AE A(AE_I) % error

7s 2337.469 2238.815 0.71

8s 937.087 906.869 0.27

9s 329.167 319.623 0.097

10s 94.710 91.547 0.028

lls 23.785 22.642 0.007

12s 11.674 11.205 0.003

13s 8.477 8.299 0.002



Table 5. Results for 2p states of Hg 79+.

2pl/2 orbital energies and differences in Eh.

Basis e AE AE(3s) a

9p -904.269 615 0.550 647 0.122 584

10p -904.653 964 0.166 299 0.034 308

llp -904.784 643 0.035 620

llp b -904.802 234 0.018 029 0.014 425

numerical -904.820 263

2p3/2 orbital energies and differences in Eh.

Basis e AE

9p -817.805 038 0.002 446

10p -817.806 484 0.001 000

llp -817.806 640 0.000 844

llp b -817.806 318 0.001 166

numerical -817.807 484

Extra energy difference when 3s functions omitted from small component spinors.

b Previous basis with most diffuse function replaced by tight function.

the error in the relativistic correction, as the basis set size is increased. Clearly, non-

relativistic basis sets for H do not need modification for use in the Dirac equation.

For Hg 79+, however, the error in the total energy is almost entirely due to the error

in the relativistic correction. The basis set clearly does not describe the relativistic

contraction of the ls orbital well. We optimized the scale factor for each basis, with

results as given in Table 4. Some 25% of the missing energy is recovered by this

procedure, but the error in the relativistic correction still dominates the error in the

total energy. This indicates that nonrelativistic basis sets need to be re-optimized,

at least for the core orbitals, if they are to be used in DHF calculations.

Results of calculations on the 2pl/2 and 2p3/2 orbitals of Hg 79+ with a few

different basis sets axe given in table 5. The basis sets were taken from atomic

calculations on Pb (Fmgri 1987). Here, the effect of spin-orbit splitting on the basis

sets may be seen. The error for the 2pl/2 is much larger than that for the 2p3/2,



even whenthe most diffuse function is replacedby a tighter function. Matsuoka and

Okada (1989) found it necessary to add two tight p functions to the non-relativistic

basis sets of Faegri (1987) in order to sufficiently reduce the eigenvalue errors for

the neutral 6p block elements. Clearly, the basis set requirements for the two spin-

orbit components are different, which implies that, in a contracted basis, it will be

necessary to use different contractions for the 2pl/2 and 2p3/2 functions.

v

Strict kinetic balance requires the 2pl/2 small component basis functions to

be composed of a ls and a 3s function in a fixed ratio. It may be argued that the

3s could be represented as a linear combination of ls functions, and therefore may

be omitted. We have investigated the effect of omitting the 3s part of the small

component spinor for each basis set size. The results are also given in Table 5.

The importance of the 3s decreases with increasing basis set size, as is expected.

With large enough basis sets, we conclude that the 3s may be omitted, but for

smaller basis sets, which may be necessary for molecular calculations, it may still

be beneficial to retain the 3s. It is important also to note that omission of the 3s

does not cause bounds failure: to the contrary, the energy increases when it is left

out. We should emphasize that the coefficients of the ls and 3s functions in our

calculations are not independently varied, as in the recent work by Ishikawa and

Sekino (1990). Our approach is equivalent to their method 2.

Finally, some calculations were done on H + and Hell +. The s basis sets

were taken from Partridge (1989), and the p basis sets were chosen in the range

normally used for polarization functions on H. The results are given in Tables 6 and

7, along with the numerical results of Laaksonen and Grant (1984). Though these

calculations do not approach the basis set limit, they at least demonstrate that

there are no problems with variational collapse. Even when the difference between

the 7s and the 15s basis results is added to the 7s4p result, as an estimate of the

truncation error in the s set, the energy is still above the numerical value.

.Manv-elect_:on systems

We have done several series of calculations on many-electron atoms, to in-

vestigate the trends in basis set errors with basis set size and with atomic number.

Results of a representative set of calculations, for 10-electron systems with Z = 10,

20, 40 and 80, are given in Table 8. The Ne basis sets were taken from Partridge

(1989). The basis sets for the ions were energy optimized in non-relativistic finite

nucleus atomic calculations. Our results for Ne are consistent with those of Hegarty

and Aerts (1987). The results are presented in terms of the basis set truncation



Table 6. Eigenvaluesin Eh for H2 + at R = 2 bohr.

Basis el/2g ca/2=

7s -1.090 734 -0.667 302

15s -1.090 954 -0.667 337

7slp -1.101 289 -0.667 438

7s3p -1.102 384 -0.667 516

7s4p -1.102 405 -0.667 517

numerical -1.102 642 -0.667 553

Table 7. Lowest eigenvalue in Eh for Hell 2+ at R = 2 bohr.

Basis el/2

7s4p -2.511 977

numerical -2.512 296

error and the error in the predicted relativistic correction for each basis set. The

trends with atomic number demonstrate again that for the heavy atoms, the er-

ror in the total energy comes mainly from the non-optimal nature of the basis for

relativistic calculations. However, the fractional error in the relativistic correction

increases slowly with atomic number: for example, the error for Hg is only twice

that for Ne.

Most of the testing has been on atomic systems. We present also a few

calculations on molecular systems, H2 and H20, in Tables 9 and 10. For H2, the

numerical results were taken from SundhoIm (1988). The basis set for H2, which is

the same as that used for H + is modest in size -- the basis set truncation error is

5.5 mEh, but the relativistic correction is accurate to 0.4 pEh. Using the previous

7s basis results for H atom, we obtain a result for the relativistic contribution to the

binding energy of 1.1 /_Eh, in agreement with the numerical result to better than

0.1 microhartree. Thus, while the absolute value of the relativistic correction may

not be accurate due to an inadequate description of the region near the nucleus,

the relativistic contribution to the binding energy is well predicted. Of course,

relativistic effects are very small for H2, but nevertheless, this result may carry over

to other molecules. It may be that the re-optimization of the core basis sets, found to



Table 8. Comparisonsof results for Ne, Ca1°+, Zr3°+ and Hg7°+.

Percentage error in relativistic correction.

Basis Ne Ca 10+ Zr 30+ Hg 7°+

7s3p 2.50 2.54 2.80 5.12

9s5p 0.53 0.41 0.46 1.12

10s6p 0.29 0.20 0.22 0.58

12s7p 0.11 0.07 0.08 0.24

13s8p 0.06 0.03 0.04 0.13

Error in relativistic correction as a percentage of error in total energy.

Basis Ne Ca 1°+ Zr 3°+ Hg 7°+

7s3p 1.4 8.7 32.2 81.5

9s5p 3.9 32.3 61.8 95.5

10s6p 6.7 29.9 72.3 97.5

12s7p 10.3 43.4 82.7 98.9

13s8p 13.6 55.6 88.2 99.4

_J

be necessary in the calculations on Hg 79+ in order to obtain accurate core energies,

may not be as critical for relativistic contributions to chemical binding. Indeed,

Schwarz et al. (1989) comment that the principal differential screening effects that

cause expansion or contraction of atomic valence orbitals due to relativity come

from the valence and sub-valence shell, and not from orthogonality tails. This

implies that a relatively poorer description of the core may not significantly affect

calculated chemical properties, and that non-relativistic basis sets may be used

in relativistic calculations without re-optimization. The results of Matsuoka and

Okada (1989) on heavy atoms show that the valence eigenvalue errors are of the

order of a few mEh when a large nonrelativistic basis is used without modification,

and the improvement on correction of the major deficiency in the core basis gives

at most lmEh improvement. Moreover, the eigenvalue errors are all in the same

direction, so that some cancellation of basis set truncation errors occurs in the

relative energies. Further investigation of the use of non-relativistic basis sets is

necessary, particularly in molecular calculations.

While there are no calculations for H20 to which we can compare directly,



Table 9. Results for H2 at R = 1.4 a0. Energies in Eh, differences in #Eh.

Basis Erd ENR AErel

7s3p -1.133 095 73 -1.133 081 64 -14.0

numericaP -1.133 643 97 -1.133 629 57 -14.4

a Sundholm (1988)

Table 10. Results for H20 at 0.96/_., 104.5 °. Energies in Eh, differences in mEh.

Basis Era ENR /kErel

4s2p, 2s -75.168 415 -75.120 506 -47.909

the computed relativistic correction is reasonable when compared with the sum of

the relativistic corrections for the atoms, which is dominated by the contribution

of 56 mEh from oxygen. The correction is consistent with the results obtained for

atoms, that the relativistic correction to the energy is underestimated in basis set

calculations, and converges from above on the true value as the basis set is enlarged.

CONCLUSIONS

In this article we have discussed some of the principles underlying finite

basis Dirac-Fock calculations, and described how these have been implemented in

a computer program. Although dealing mostly with atoms, our test calculations,

as well as results obtained by others using similar approaches, clearly demonstrate

the feasibility of carrying out high-quality Dirac-Fock calculations for molecules.

The main obstacle to such calculations today appears to be the lengthy basis set

expansions required. At the Dirac-Fock level the storage problem this creates can

be largely overcome by resorting to direct SCF methods. We feel confident that,

with further development, routine quantum chemical calculations of high accuracy

for molecules containing heavy atoms will soon be a reality.
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